
MicroTales: Story Planning
Benchmark Problems that Scale along

Several Dimensions
Version 1.0

Technical Report
October 19, 2025

Stephen G. Ware and Molly Siler
Narrative Intelligence Lab

Department of Computer Science
University of Kentucky

Abstract

This document defines MicroTales, a collection of elements that can be combined
into story planning problems of varying size and difficulty. Problems simulate
the challenge of telling a structured story in a game where a player typically
controls one of the characters and an algorithm controls the rest. MicroTales
fills a gap among existing AI benchmark problems by featuring active non-player
characters, awide variety of actions, and the possibility to soft lock the problem. Its
purpose is to provide a clearly defined common environment to compare different
storytelling algorithms without defining what makes a good story.



Contents
Motivation 2

Design Goals 3

Example Problem 8

Definitions 11
Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Locations and Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Variables and Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . 21
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Version History 46

License 46

Acknowledgments 46

Bibliography 46

1



Motivation
Story planning is the challenge of generating a narrative that meets certain
requirements on its structure and content. It is difficult because a story planner
needs to look ahead and consider many possible stories before finding one that
satisfies all of the solution criteria.

There has now been several decades of academic research on narrative
planning [13, 4]. Each new research project tends to define one or a few new
story planning problems, typically ones that highlight the storytelling features
being studied by that project. In a previous effort [12], we collected several of
these problems and put them into a common syntax to make it easier to test an
algorithm on a variety of “naturally occurring” problems from several authors.

What we feel is missing, and what we are trying to provide with this project,
is a single story domain that can generate a wide variety of storytelling problems
that vary in size and difficulty. We are inspired by projects like the International
Planning Competition [9], AI Gymnasium [2], and TextWorld [2], but we find
many of their problems do not capture the storytelling challengeswe are interested
in studying. We also hope that this project will help to make story planning
problems more accessible to non-academic audiences.

This document describes MicroTales, a single storytelling domain based on
very simple fantasy Computer Role Playing Games. Each problem has:

• Objects that exist, such as characters and locations.
• Variables that can be assigned values to define the world’s current state.
• An initial state that describes the configuration of all elements at the start.
• Goals for each character and for the story itself.
• Actions, which have preconditions that limit when they can occur and
effects that define how they change the world state.

We define each of these parts in detail. MicroTales problems are highly modular,
with different elements becoming available only when certain extensions are
enabled. For example, the Undead extension contains characters, items, locations,
and actions related to ghosts. When the Undead extension is enabled, these
elements can be used in a problem.

Our definitions do not assume any particular implementation. We want it to
be possible to implement MicroTales in everything from the Planning Domain
Definition Language [3], used to define classical planning problems, to an AI
Gymnasium environment [10], used to define a Markov Decision Process for
reinforcement learning, to even non-digital implementations, like a board game.

2



Design Goals
Game-Like Storytelling Environment: MicroTales is designed to imitate a
simple game environment where a player controls one character and an experience
manager (whichmight be a human gamemaster or an algorithm) controls the other
characters and the environment [7]. One of the central challenges in this kind of
environment is telling a good story while allowing the player significant agency
to make meaningful choices. Problems like this are often solved interactively,
meaning that new solutions are generated during play to adapt to unexpected
player actions. This does not mean all implementations of MicroTales need to be
interactive. Youmay find it helpful to generate problems that are solved only once;
our goal is for them to reflect the kinds of problems that an experience manager
would need to solve interactively. In other words, if an algorithm can solve a
wide variety of MicroTales problems, it would probably make a good experience
manager if it could be made to run interactively.

Event-Level Storytelling: Stories can be generated at many levels of granu-
larity. The smallest “atomic unit” of story content in MicroTales is an event, which
typically has a subject, verb, and usually one or two objects. An event would corre-
spond to roughly one sentence of a written story. Early storytelling systems like
Universe [5] and Facade [6] create stories one scene at a time, and an atomic piece
of storytelling content corresponds to roughly one paragraph of a written story.
Systems based on text generation, like AI Dungeon [11], generate stories one word
at a time. Event-level storytelling exists between these two poles.

Scalable along Several Dimensions: It should be possible to generate a wide
variety of problems of varying size and difficulty, from trivially easy to nearly
impossible. MicroTales can vary in the size of the map, the number of characters,
the number of items, the types of actions that are available, and the number and
complexity of goals that need to be achieved. The ability to generate a wide variety
of problems has several advantages. By generating problems of different sizes and
with different features turned on or off, we can make a controlled study of what
makes story planning problems easy or hard to solve. Having many problems
to train on also encourages learning-based approaches to generalize rather than
overfit to a small number of specific problems.

Following Genre Tropes: While MicroTales is meant to allow a wide variety
of problems, it is also attempting to follow the genre tropes of simple Medieval
computer Role Playing Games. This serves two purposes. First, it allows players

3



of an interactive MicroTales game to leverage existing genre knowledge and
minimize the amount of onboarding required to understand the game’s rules.
Second, MicroTales is intentionally attempting to represent “naturally occurring”
problems. Some things are unlikely or impossible, and some things are over-
represented. MicroTales is not meant to represent every conceivable situation or
action. It is not meant to be the only type of benchmark problem that storytelling
algorithms should be tested on. We are attempting to add to, not restrict, the
variety of storytelling problems available for testing.

Active NPCs: One purpose of MicroTales is to fill a gap we perceive in the
kinds of games available to test storytelling algorithms, namely story games with
active non-player characters (NPCs). Many story games, like the interactive fiction
Zork [1] and similar games available in the TextWorld environment [2], rely on
the player character to take most of the actions in the story. Actions by others are
often short and direct reactions to the player. An ideal MicroTales problem will
feature NPCs taking actions motivated by their own goals, ideally in ways that
are predictable or at least believable to the player. Solving a MicroTales problem
should involve the player anticipating the actions of NPCs and creating a situation
that encourages NPCs to act in a way that accomplishes the player’s goal.

Wide Variety of Actions: Many planning and reinforcement learning bench-
mark problems have a limited variety of action types available. For example, the
classic Blocks World planning problem [8] has only one type of action—moving a
block onto another block or onto the table. While it might have a large number of
possible actions when we consider all blocks, it has only one type of action. Simi-
larly, the Cart Pole reinforcement learning problem [10] has only two actions: push
the cart left or right. The action can vary in the force applied, but still there is only
one or two types of action. We find that storytelling problems tend to involve a
large number of action types. MicroTales has many types of actions with different
kinds of preconditions and effects.

Soft Locks are Possible: A soft lock means a solvable problem has been put
into a state from which no solutions are possible. The potential to soft lock a
puzzle makes it challenging because solvers must plan ahead. Solvers that rely
on performing random actions—like Monte Carlo random rollouts or random
exploration in Markov Decision Process solvers—will need to account for soft
locks. Many benchmark problems used to test classical planning algorithms [9] do
not allow soft locks. Stories often feature irreversible actions that require careful
planning, which is why soft locks are allowed, and even encouraged, inMicroTales.

4



Deterministic Actions: Actions in MicroTales are deterministic, meaning that
when an action occurs we know with 100% certainty what the resulting state
will be afterward. Determinism allows a wide variety of search and planning
techniques to be applied. Real world problems are not deterministic, but
MicroTales is not designed to simulate a real world problem; it is designed to
simulate a game in a virtual environment where the experience manager has full
control over the virtual world. While a single MicroTales problem is deterministic,
the larger problem of experiencemanagement in an interactiveMicroTales game is
usually viewed as nondeterministic since the player may take unexpected actions.

Complex Multi-Agent Interactions: Most problems will feature more than
one character. Many existing AI benchmarks feature only a single agent or assume
agents are strictly cooperative or competitive. In MicroTales, each character has
their own goals, and they should aid or thwart one another to the extent that their
goals align or diverge. One of the central challenges of storytelling is ensuring that
each character behaves realistically while maintaining a story’s central structure.
MicroTales provides an environment to compare emergent storytelling via multi-
agent systems to centralized storytelling via planning.

No Model of Storytelling Enforced: MicroTales enables the study of what
makes a story in a story game believable, interesting, and fun. It tries to avoid
enforcing any particular model of storytelling in its rules. Action preconditions
are meant to be minimal requirements on when an action would be “physically
possible” in the virtual world. For example, one character can only give an item
to another if they are in the same location and if the giver has the item. The
preconditions do not require that the receiver wants the item; it is up to the
algorithm and its model of storytelling to determine whether this action makes
sense. To study a model of good storytelling, it must be possible to generate bad
stories. Many AI benchmark problems define success as reaching a clear goal via a
shortest or lowest cost path, but many MicroTales problems will have “solutions”
that are bad stories—that is, a sequence of actions that achieves the story goals
but is made of actions that are not believable or fun. The quality of a MicroTales
solution should not be judged solely onwhether it achieves goals or on the number
of actions it contains. A solution must be evaluated as a story, but MicroTales does
not define what makes a good story. In other words, MicroTales defines a set of
objects, actions, and goals so that two researchers can be said to be working in the
same domain, but it does not define success in that domain.

5



Problem Curation Encouraged: MicroTales defines a problem’s elements and
when they can be used, but it makes no claim that all generated problems are
interesting. Many MicroTales problems will have no way to reach a goal state, and
many that have a reachable goal state may not have any interesting or good stories
that do so. In other words, generating a uniform sample of MicroTales problems is
not likely to result in a set of interesting problems. Problem generators will need
to apply further criteria and quality checks to ensure problems are interesting.
Generating or curating interesting problem sets by hand is also encouraged.

6



name: "Robin Hood"

version: 1.0

extensions:

- Crime # Adds jail; allows lawful goal, arrest and release actions

- Marriage # Adds chapel; allows wed goal, marry action

- Monarchy # Adds castle and Crown; allows ruling goal, enthrone action

- Theft # Adds bandit, Coin, and Sword; allows steal action

- Violence # Adds knight and Sword; allows avenged goal, attack action

locations:

- Sherwood : forest # Sherwood forest

- Nottingham : castle # Nottingham Castle

- Jail : jail # The Jail

- Abbey : chapel # Fountains Abbey

paths: # Sherwood Forest connects all locations

- [Sherwood, Nottingham]

- [Sherwood, Jail]

- [Sherwood, Abbey]

characters:

Robin : bandit # Robin Hood is a bandit.

John : noble # Prince John is a noble.

Sheriff : knight # The Sheriff of Nottingham is a knight.

Marian : noble # Maid Marian is a noble.

initial: # Only need to list values if they are not defaults

- [location, Robin, Sherwood] # Robin starts in Sherwood Forest.

- [right, John, Crown] # Prince John starts with a Crown.

goals:

- [Robin, rich, Robin] # Robin wants coins.

- [Robin, wed, Robin, Marian] # Robin wants to marry Marian.

- [John, ruling, John] # John wants to be king.

- [John, wed, John, Marian] # John wants to marry Marian.

- [John, avenged, John] # John wants his enemies dead.

- [Sheriff, ruling, John] # The sheriff wants John to be king.

- [Sheriff, lawful] # The sheriff wants no criminals.

- [Marian, ruling, Marian] # Marian wants to be monarch.

- [wed, Robin, Marian] # Story goal: Robin marries Marian.

Figure 1: An example MicroTales problem in YAML format.

7



Example Problem
Figure 1 gives an example MicroTales problem that approximates a simple version
of the Robin Hood setting. The story goal, given on the last line, is for Robin Hood
and Maid Marian to get married. This section describes some example stories that
are possible in this problem and why they might be desirable or undesirable. We
assume this problem is presented as an interactive game where the player controls
Robin Hood.

walk(Robin, Nottingham) # Robin goes to Nottingham Castle.

take(Robin, Coin, John) # Robin wants coins to become rich.

attack(Sheriff, Robin) # The Sheriff of Nottingham hurts Robin.

attack(Sheriff, Robin) # The sheriff kills Robin.

This is a simple but unsuccessful story. Robin robs Prince John, but the Sheriff
of Nottingham kills Robin for his crimes. This example does not achieve the
story goal, but if the problem is presented as an interactive puzzle it might be
a reasonable but unsuccessful attempt by the player to achieve Robin’s goals.
Suppose the player tries a different approach.

walk(Robin, Castle) # Robin goes to Nottingham Castle.

take(Robin, Crown, John) # Robins steals John’s crown.

enthrone(Robin) # Robin is crowned king.

arrest(Sheriff, Robin, Jail) # Lawful sheriff throws Robin in jail.

walk(Marian, Sherwood) # Marian on her way to release Robin.

release(Marian, Jail) # Marian unlocks the jail.

walk(Robin, Jail, Sherwood) # Robin on his way to marry Marian.

walk(Robin, Abbey) # Robin goes to the chapel.

walk(Marian, Abbey) # Marian goes to the chapel.

marry(Robin, Marian) # Marian becomes queen by marriage.

This story is more interesting. Robin steals the Crown and becomes the
monarch. The storyteller is faced with two possible responses from the sheriff:
attack like in the previous story, or arrest Robin and move him to the jail.
Killing Robin would end the story before the goal is achieved, but arresting him
leaves it open for a happy ending later. Robin can’t do anything from the jail, but
Marian comes to free him. Marian’s plan is to marry Robin and satisfy her ruling

8



goal as well as the story goal. We consider this story more interesting because
non-player characters take an active role.

While this makes a plausible story, it may not work when presented as a
puzzle, since the player might wonder why Robin was allowed to take several
actions in a row without any response from the sheriff. Next, we’ll consider a
story that enforces strict turn-taking, always allowing one player action after one
NPC action.

enthrone(John, Nottingham) # John is crowned king.

# The player chooses to wait, passing their turn.

walk(John, Sherwood) # John on his way to marry.

take(Robin, Coin, John) # Robin steals John’s money.

walk(Marian, Sherwood) # Marian on her way to marry.

take(Robin, Crown, John) # Robin steals John’s crown.

walk(John, Abbey) # John on his way to marry.

walk(Robin, Nottingham) # Robin on his way to be crowned.

walk(Marian, Abbey) # Marian on her way to marry.

enthrone(Robin) # Robin is crowned king.

take(Sheriff, Crown, Robin) # Sheriff steals Robin’s crown.

walk(Robin, Sherwood) # Robin on his way to marry.

walk(Sheriff, Sherwood) # Sheriff on his way to John.

walk(Robin, Abbey) # Robin on his way to marry.

walk(John, Sherwood) # John on his way to the sheriff.

marry(Robin, Marian) # Marian becomes queen by marriage.

John starts by achieving his ruling goal and becoming the monarch. He and
Marian then walk in the direction of Fountains Abbey to marry. On the way, John
gets robbed by Robin Hood. The player waiting for John to pass by is a prime
example of a player anticipating active NPCs. Robin then goes to Nottingham
Castle and crowns himself the new monarch before the wedding can take place.
The sheriff takes the crown from Robin and goes to Sherwood Forest hoping to
give the crown to John. Robin makes his way to Fountains Abbey and marries
Marian, achieving the story goal.

In this example, our model of storytelling assumes characters only witness
actions that occur in their location (except enthrone, which gets announced to
everyone throughout the kingdom). The sheriff is not aware of Robin’s crimes,
since he was not in Sherwood Forest during the robbery. This model of limited
observability is not required. MicroTales does not model character beliefs; that is
left to the storyteller, who is free to use this or any other model. For this problem,

9



we think it makes the characters seemsmore realistic, and it adds a new dimension
to the puzzle by encouraging Robin to avoid witnesses to his crimes.

Given the sheriff does not know about Robin’s crimes, it may seem odd that
he would take the Crown. This theft makes him a criminal and goes against his
lawful goal. The sheriff takes the crown because he hopes to return it to John so
that John can again take the throne. After returning the crown, the sheriff plans
to arrest himself, satisfying all his goals, though the story ends before he can
complete his plan. Does it make sense for the sheriff to arrest himself? This is
up to the storyteller.

Notice also how the sheriff and John meet in Sherwood Forest. According to
our model, the sheriff saw John leave for the forest, but did not see John continue
to the Abbey, so the sheriff wrongly believes John is in the forest. John did not see
the sheriff go to the forest, so John wrongly believes the sheriff is in the castle.
Luckily, these two meet by chance in the forest despite their wrong beliefs thanks
to some clever coordination by the storyteller.

10



Definitions
A MicroTales problem is defined by several explicit elements which imply the
inclusion of other elements. The explicit elements of a problem are:

• An optional name or title.
• An optional version number, to check compatibility. This is the version of
MicroTales, not of the problem itself.

• A list of extensions, which define what elements are available to use.
• A list of locations, each defined by a name and type.
• A list of paths that connect locations.
• A list of characters, each defined by a name and type.
• A list of initial value assignments to the problem’s variables.
• A list of goals for the characters and the story itself.

Figure 1 shows an example problem in YAML format.
Many elements of a problem are not explicitly listed but are implied by what

is explicitly listed. For example, each problem defines variables, and the current
state of the problem is an assignment of a value to each of its variables. Variables
are not explicitly listed because they are implied by the extensions, locations, and
characters. Similarly, actions are not explicitly listed because which actions are
available is implied by the other elements.

A problem’s elements cannot be created or destroyed. The only thing about
a problem that changes over time is the values assigned to its variables. New
locations cannot be added to the map, nor can existing locations be removed. New
characters cannot be created or removed (though they can be killed when the
relevant extensions are enabled). The items a character is carrying are not first
class elements of a problem, so they do not need to be explicitly defined, and they
can be created and destroyed (see the section on Constants for how items work).

The following subsections define MicroTales elements in detail. Rules which
must be followed are required. When something is recommended, it means that a
problem generator should try to follow those rules when it can, but it may choose
to ignore those rules in service of some other design goal. When a definition says
something is a default, it means that a problem assumes the rule will be followed.
If a default is not followed, the problemmust explicitly state some other value. For
example, a noble character starts with a Coin in their left hand by default. The
problem does not need to list this under its initial facts because it will be assumed.
If the noble should not start with a coin, the problem should explicitly list their
left hand as Null.

Style and Capitalization Throughout this document, we capitalize specific,
individual objects. This includes universal constants like True, False, and Null,

11



the names of all extensions, the names of all constants, and the names given to
individual objects defined in example problems, like the character name Robin.
We use lower case for types, which includes all location types, character types,
variable names, goal names, and action names. For example, Robin is the name of
a specific character, so we capitalize his name, but his character type, bandit, is a
type and is written in lower case. The variable health(Robin) has a lower case
name because health is a type of variables, but the value Healthy, which can be
assigned to that variable, is a single individual constant and is capitalized.

12



Extensions
An extension is a group of related problem elements that become available
when an extension is included in a problem. Extensions are designed to allow
additional types of actions in a problem, but doing someans enabling the locations,
characters, and goals that would make those actions possible and relevant.

Figure 1 shows an example list of extensions. In YAML, the list of extensions
is simply the key extensions followed by a sequence of strings. The list of
extensions is optional and can be omitted, but problems with no extensions are
likely to be uninteresting.

Some extensions require that other extensions are also enabled. For example,
the Undead extension requires some way for characters to die, which is enabled by
both the Sickness and Violence extensions. One of these two must be enabled in
order to enable Undead. A problem should explicitly list all extensions that it uses,
even those required by other extensions. For example, a problem that includes
Undead should also explicitly list Sickness or Violence or both.

Several problem elements can be enabled by more than one extension. For
example, several extensions enable potions of some sort. All of these extensions
enable the sorcerer character type, whose special actions revolve around using
potions.

Not all of the elements enabled by an extension need to be used in the problem,
though at least one should be used. We recommend this rule of thumb: if an
extension could be removed without modifying the problem at all, then it is not
really enabled and should not be listed as part of the problem.
Alchemy

• Requires Enchantment, Healing, Sickness, Stealth, Teleportation, or
Undead.

• Enables the laboratory location type.
• Enables the Flower item constant.
• Enables the brew action.

Commerce

• Enables the market location type.
• Enables the merchant character type.
• Enables the Coin item constant.
• Enables the rich goal.
• Enables the sell action.

Crafting

• Requires Commerce, Crime, Monarchy, Theft, or Violence.

13



• Enables the workshop location type.
• Enables the Ore item constant.
• Enables the craft action.

Crime

• Enables the jail location type.
• Enables the knight character type.
• Enables the criminal variable type.
• Enables the Sword item constant.
• Enables the lawful and lawless goals.
• Enables the arrest, jailbreak, and release actions.

Enchantment

• Enables the noble and sorcerer character types.
• Enables the CharmPotion item constant.
• Enables the charm action.

Forgiveness

• Requires Crime.
• Enables the chapel location type.
• Enables the cleric character type.
• Enables the forgive and repent actions.

Healing

• Requires Sickness or Violence.
• Enables the cleric and sorcerer character types.
• Enables the HealPotion item constant.
• Enables the heal action.

Marriage

• Enables the chapel location type.
• Enables the spouse variable type.
• Enables the Flower item constant.
• Enables the wed goal type.
• Enables the marry action.

Monarchy

• Enables the castle location type.
• Enables the noble character type.
• Enables the monarch variable type.
• Enables the Crown item constant.

14



• Enables the ruling goal type.
• Enables the enthrone action.

Sickness
• Enables the sorcerer character type.
• Enables the health variable type.
• Enables the CursePotion item constant.
• Enables the harmed and unharmed goal types.
• Enables the curse, die, loot, recover, and sicken actions.

Stealth
• Enables the camp location type.
• Enables the bandit and sorcerer character types.
• Enables the visible variable type.
• Enables the HidePotion item constant.
• Enables the hide action.

Teleportation
• Enables the sorcerer character type.
• Enables the TeleportPotion item constant.
• Enables the teleport action.

Theft
• Enables the bandit character type.
• Enables the Coin and Sword item constants.
• Enables the rich goal type.
• Enables the take action.

Undead
• Requires Sickness or Violence.
• Enables the graveyard location type.
• Enables the cleric and sorcerer character types.
• Enables the BanishPotion and RaisePotion item constants.
• Enables the banish, curse, raise, and rise actions.

Violence
• Enables the knight character type.
• Enables the health variable type.
• Enables the Sword item constant.
• Enables the harmed and unharmed goal types.
• Enables the attack, die, loot, and recover actions.

15



Locations and Paths
MicroTales problems take place on amapmade of one ormore connected locations.
A location has a unique name and a type. The type determines what special
actions are available in that location. There can be more than one location of the
same type on a map as long as they have different names. For example, Sherwood
and Mirkwood might both be locations of type forest. We recommend avoiding
duplicate locations when possible simply for the sake of variety.

Figure 1 shows an example list of locations. In YAML, the list of locations is the
key locations followed by a sequence of one-element maps that each associate
one unique string name to a string type, where the type is one of those defined
below. A sequence of maps is necessary because the order locations are defined
in matters. The list of locations is not optional, because a problem must define at
least one location.

Four location types are always available: the cave, crossroads, forest, and
village. These locations are similar in function—characters can drop or pickup
an item. The cave and forest have default items waiting to be picked up when
some extensions are enabled.

The order that locations are defined in affects the default starting locations of
characters. For example, the bandit character type’s default starting location is
the first camp or crossroads location that is defined in the problem. If a problem
contains both a camp and a crossroads, the bandit will start in whichever one
is defined first in the list of locations. Similarly, if the problem has more than one
location of type camp, the first one will be used. If there are no locations that a
character prefers to start in, they default to starting in the first location in the list.
These defaults do not apply if a problem explicitly states a character’s starting
location.

After defining the list of locations, a problem should define how they are
connected via paths. A path is a pair of locations. A path goes in both directions.
For example, if Sherwood and Nottingham are connected, then a character can
walk from one to the other and back again. When defining a path, the two locations
can be given in either order. Each location type defines a minimum and maximum
number of paths it should have connecting it to other locations.

As shown in Figure 1, in YAML the list of paths is the key paths followed by a
sequence of pairs of strings that match the names of locations. The list of paths is
optional if no locations are connected, though only very small problems will have
no paths.

We recommend that locations be placed on a 2 dimensional grid where each
location is of equal size and paths always lead North, South, East or West. This
is not required, but it makes it easier to visualize MicroTales problems for an

16



audience.
The existence of paths is important for the walk action, but paths are not

defined as variables because they do not change (though the jail location type can
be locked to restrict movement). We recommend that all locations be accessible
to one another. In other words, it should be possible to walk a route from any
location to any other.
camp

• Only available when Stealth is enabled.
• Required to have between 1 and 2 connections.
• Any character can hide here.

castle

• Only available when Monarchy is enabled.
• Required to have between 1 and 4 connections.
• A character can enthrone here when holding a Crown to become the
monarch.

cave

• Required to have between 1 and 2 connections.
• When Crafting is enabled, the item at this location is Ore by default.
• A character can drop or pickup an item here.

chapel

• Only available when Forgiveness or Marriage is enabled.
• Required to have between 1 and 3 connections.
• A character can repent for their crimes here.
• Two characters can marry here.

crossroads

• Required to have 2 to 4 connections.
• A character can drop or pickup an item here.

forest

• Required to have 0 to 4 connections.
• A character can drop or pickup an item here.
• When Alchemy is enabled, the item at this location is Flower by default.
• A Flower can grow here.

graveyard

• Only available when Undead is enabled.

17



• Required to have 0 to 2 connections.
• A Ghost can be raised or can rise here.

jail

• Only available when Crime is enabled.
• Required to have exactly 1 connection.
• Characters can only walk into or out of this location when it is not locked.
• The arrest action sends a character here and causes it to be locked.
• The jailbreak and release actions unlock this location.

laboratory

• Only available when Alchemy is enabled.
• Required to have 1 to 2 connections.
• Any character can brew a potion from a Flower here.

market

• Only available when Commerce is enabled.
• Required to have 1 to 4 connections.
• Any character except the merchant can sell an item here to get a Coin.

village

• Required to have 0 to 4 connections.
• A character can drop or pickup an item here.

workshop

• Only available when Crafting is enabled.
• Required to have 1 to 2 connections.
• Any character can craft one metal item into another here.

18



Characters
Characters are agents who act in the story world. Like locations, each character
has a unique name and a type. There can be more than one character of the same
type in a problem as long as they have different names. We recommend avoiding
duplicate character types when possible simply for the sake of variety.

Figure 1 shows an example list of characters. In YAML, the list of characters
is the key characters followed by a mapping of string names to string types,
where the type is one of those defined below. The list of characters is not optional,
because a problem must define at least one character.

Character types define what special actions a character can take. They prohibit
some character goals and recommend others. Many character types also define
a default starting location and starting items. These defaults do not apply if a
problem explicitly states some other starting location or starting items.

The only character type that is always available is the peasant, which has no
special qualities. All other character types are enabled by extensions.
bandit

• Only available when Stealth or Theft is enabled.
• Starts at the first camp or crossroads defined in the problem by default.
• Required not to have lawful goal.
• Recommended to have a rich goal.
• Can hide at any location, not just a camp.
• Can take from another character even when unarmed.

cleric

• Only available when Forgiveness, Healing, or Undead is enabled.
• Starts at the first chapel or graveyard defined in the problem by default.
• Required not to have avenged goal (unless they become a Ghost; see Goals).
• Recommended to have an obliged goal.
• Can banish a Ghost even if they are not carrying a BanishPotion.
• Can forgive a character their crimes.
• Can heal a character even if they are not carrying a HealPotion.

knight

• Only available when Crime or Violence is enabled.
• Starts at the first castle or market defined in the problem by default.
• Starts with a Sword in their left hand by default.
• Recommended to have a ruling goal for a noble.
• Recommended to have a lawful goal.
• Can attack even when not carrying a Sword.

19



merchant

• Only available when Commerce is enabled.
• Starts at the first market or crossroads defined in the problem by default.
• Recommended to start with at least one item of any type except a Coin.
• Required not to have a liked goal.
• Recommended to have a rich goal.
• Cannot sell items at the market.

noble

• Only available when Enchantment or Monarchy is enabled.
• Starts at the first castle or chapel defined in the problem by default.
• Starts with a Coin in their left hand by default.
• Recommended to have a ruling goal.
• Can charm another character even when not carrying a CharmPotion.

peasant

• Starts at the first village or workshop defined in the problem by default.

sorcerer

• Only availablewhen Enchantment, Healing, Sickness, Stealth, Teleportation,
or Undead is enabled.

• Starts at the first laboratory or graveyard defined in the problem by
default.

• Recommended to start with at least one potion of any type.
• Recommended to have an avenged goal.
• Can brew a potion even when not in a laboratory.

20



Variables and Initial Values
Variables are features of a problem that are assigned one of several possible values.
All of a problem’s variables with their assigned values define a problem state.
Different actions are possible depending on the current state, and actions change
the values assigned to variables. Actions are the only way to change variable
values.

A problem does not explicitly define its variables; they are implied by the other
elements in the problem. For example, when the Violence extension is enabled
the problem must have a health variable for every character.

A variable is identified by a name followed by zero to many arguments. In
the example above, health is the name of the variable, and it has one argument,
the name of the character. If a problem defines two characters named Robin and
Marian, then it will have two health variables, one for each of them. In text, we
would write those variables as health(Robin) and health(Marian), though in
YAML we use a different style, as discussed below.

Some variables have more than one argument, and the order of arguments
matters. For example, every problem tracks the relationship between
each pair of characters, so our example problem will need the variables
relationship(Robin, Marian) and relationship(Marian, Robin). The first
variable tracks how Robin regards Marian, and the second tracks how Marian

regards Robin. Relationships are not symmetric, so these variables can have
different values.

The variable definitions in this section begin with the variable name, followed
by one or more parameters in parentheses, followed by a colon and a description of
the variable’s possible values. Sometimes a value is simply Boolean, meaning True
or False. Sometimes a value is a type, like a location. For example, every character
has a location variable, and its possible values are the names of every location
defined in the problem, plus Nullto represent a situation where the character is
nowhere on themap. Sometimes a variable’s value is a set of pre-defined constants.
For example, a relationship variable can have three possible values: Friend,
Null, and Enemy, which mean that the first character considers the second a
friend, has no relationship, or considers the second an enemy respectively. Many
variables have one of a pre-defined list of constants as their possible values. All
constants are defined in the next section.

All variables have a default initial value theywill be assigned, but these defaults
are ignored if the problem explicitly defines a variable’s initial value. Figure 1
shows an example list of initial values. In YAML, this list is the key initial

followed by a sequence of sequences. Each initial value sequence includes the
variable name (defined below), its arguments, and finally the initial value to assign

21



to that variable. For example, if we want Robin to start with a Sword, we would
write:

[left, Robin, Sword]

This sequence has three parts: the variable name, the variable’s arguments (in this
case, one argument), and finally the value to assign to the variable—i.e. the item
to put in Robin’s left hand. In text, we would write this value assignment as:

left(Robin) = Sword

Defining the initial value of a variable with multiple arguments looks like this:
[relationship, John, Robin, Enemy]

Some variables, like the relationship between each character, are counter to
MicroTales’s design principle of modeling only necessary physical elements of the
world and making no commitments to any particular model of storytelling. These
variables exist because they are needed to define some of the goals that characters
and stories have. Whenever possible, we try to avoid using them to limit when
actions are possible.
criminal ( character ) : Boolean

• Only available when Crime is enabled.
• Tracks whether the character has committed any crimes.
• Default value is False.
• The lawless goal is satisfied when characters are criminals and not in a
jail.

• The lawful goal is satisfied when no characters are criminals or when all
criminals are in a jail.

• It is a crime to arrest a character who is not a criminal.
• It is a crime to release prisoners from the jail.
• When Sickness or Undead is enabled, it is a crime to curse a character who
is not a criminal.

• When Theft is enabled, it is a crime to take an item from a living character
who is not a criminal.

• When Violence is enabled, it is a crime to attack a character who is not a
criminal.

health ( character ) : {Healthy, Hurt, Dead, Ghost}
• Only available when Sickness or Violence is enabled.
• Tracks the capabilities of the character to do certain actions.
• Default value is Healthy, meaning a character can act normally.
• A Hurt character can do most actions but cannot walk.
• A Dead character cannot do most actions.
• When Undead is enabled, a Ghost character cannot do most actions, but they
can curse and walk.

22



• The harmed goal is satisfied by a character not being Healthy.
• The unharmed goal is satisfied by a character being Healthy.
• The attack and curse actions degrades a target character’s health (Healthy
to Hurt or Hurt to Dead).

• The sicken action causes a Healthy character to become Hurt.
• The die action causes a Hurt character to become Dead.
• The heal and recover actions causes a Hurt character to become Healthy.
• The raise and rise actions cause a Dead character to become a Ghost and
sets their location to a graveyard.

• The banish action causes a Ghost to become Dead.

item ( location ) : the name of any item or Null
• The location must be a cave, crossroads, forest, or village.
• Tracks what item is lying on the ground at the location.
• Default value is Null, which means there is no item at this location.
• Characters can drop items they are holding.
• Characters can pickup a location’s item.
• When Crafting is enabled, Ore is in every cave by default.
• When Alchemy is enabled, a Flower is in every forest by default.
• When Alchemy is enabled, a Flower can grow in a forest.

left ( character ) : any item or Null
• The item a character is holding in their left hand.
• Default value is usually Null, which means this hand is empty, but some
character types start with items in their hands by default (see Characters).

• A character’s left and right hands behave the same way.

location ( character ) : the name of any location or Null
• The character’s current position on the map.
• The value Nullmeans the character is nowhere on the map.
• Character types specify default locations. When the specified locations are
not available, the default value is the first location defined in the problem.

• The at goal is satisfied by a character being at a certain location.
• Many actions require that a character be at a certain location or in the same
location as another character they are interacting with.

• Character locations can change via the arrest, teleport, and walk actions.

locked ( jail ) : Boolean
• Only available when Crime is enabled.
• The argument must be a location of type jail.
• Tracks whether the jail is locked or unlocked.

23



• Default value is False.
• When a jail is locked, characters cannot walk to or from it.
• The arrest action moves a character to a jail and locks the jail.
• The jailbreak and release actions unlock a jail.

monarch ( ) : the name of any character or Null
• Only available when Monarchy is enabled.
• Tracks which character is the ruler.
• Default value is Null, meaning no character is currently the monarch.
• The ruling goal is satisfied by a certain character becoming the monarch.
• When holding a Crown in a castle, a character can enthrone themselves to
become the monarch.

relationship ( character, other ) : {Friend, Null, Enemy}
• How the first character views the other character. The arguments must be
different characters.

• Default value is Null, which means the character has no relationship or a
neutral relationship to the other.

• The value Friend means the character views the other positively.
• The value Enemy means the character views the other negatively.
• Relationships are not symmetric. The other’s relationship to the character
can be different.

• The avenged goal is satisfied by a character not regarding other living
characters as Enemy.

• The disliked goal is satisfied by other characters regarding a character as
an Enemy.

• The liked goal is satisfied by other characters regarding a character as a
Friend.

• The obliged goal is satisfied by a character regarding other Healthy

characters as Friend.
• The charm, give, heal, and release actions can cause a relationship to
improve (Enemy to Nullor Nullto Friend).

• The arrest, attack, banish, curse, and take actions can cause a
relationship to degrade (Friend to Nullor Nullto Enemy).

right ( character ) : any item or Null
• The item a character is holding in their right hand.
• Default value is usually Null, which means this hand is empty, but some
character types start with items in their hands by default (see Characters).

• A character’s left and right hands behave the same way.

24



spouse ( character ) : the name of any character or Null
• Only available when Marriage is enabled.
• Tracks who is married to the character.
• Default value is Null, meaning the character is not married.
• Marriage is symmetric. When character A has spouse B, then character B
must also have spouse A.

• The wed goal is satisfied when a pair of characters are one another’s spouses.
• The marry action causes two characters to become one another’s spouses.
• When characters die via the attack, curse, or die actions, both members
of a marriage have their spouse set to Null.

visible ( character ) : Boolean
• Only available when Stealth is enabled.
• Tracks whether a character can be seen by others.
• Default value is True.
• Invisible characters can usually act normally, but actions usually cannot be
done to invisible characters.

• Characters can become invisible via the hide action.
• Characters become visible when they walk to a new location.

25



Constants
Constants are special values that can be assigned to some variables. Constants
are not explicitly defined; they are implied by which extensions are enabled. For
example, the Ghost constant is one possible value for a health variable, and it
represents a character who has been raised from the dead. However, if the Undead
extension is not enabled, this constant is not available, even if the other constants
that can be assigned to health variables are.

One use of constants is the items that characters carry and use in the story.
MicroTales elements cannot be created or removed, but items are not first class
elements. Each character has a left and right hand variable, and the possible
values that can be assigned are the item constants or Nullto represent holding
nothing. This means each character can hold up to two items, one in each hand.
Consider the sell action, where a character trades an item for a Coin. The action’s
precondition requires that the character have the item they are selling in either
their left or right hand. The effects of the action replace that hand’s value with
a Coin constant, effectively destroying the original item and creating a new Coin

item.
BanishPotion

• Only available when Undead is enabled.
• This is a potion item that can be held in a character’s left or right hand.
• Allows any character to banish a Ghost, setting its health to Dead.
• When Alchemy is enabled, it can be created from a Flower via the brew

action.

CharmPotion
• Only available when Enchantment is enabled.
• This is a potion item that can be held in a character’s left or right hand.
• Allows any character to charm another, causing the target’s relationship
toward the charmer to improve.

• When Alchemy is enabled, it can be brewed from a Flower.

Coin
• Only available when Commerce or Theft is enabled.
• This is a metal item that can be held in a character’s left or right hand.
• The rich goal is satisfied by having coins.
• Any item can be converted into a coin via the sell action at the market.
• When Crafting is enabled, it can be crafted from any other metal item or
into any other metal item.

Crown

26



• Only available when Monarchy is enabled.
• This is a metal item that can be held in a character’s left or right hand.
• Needed for a character to enthrone themselves in a castle to become the
monarch.

• When Crafting is enabled, it can be crafted from any other metal item or
into any other metal item.

CursePotion

• Only available when Sickness or Undead is enabled.
• This is a potion item that can be held in a character’s left or right hand.
• Allows any character to curse another, lowing the target’s health.
• When Alchemy is enabled, it can be brewed from a Flower.

Dead

• Only available when Sickness or Violence is enabled.
• Assigned to a character’s health to indicate they are not alive and cannot
do most actions.

• The attack, curse, and die actions can kill a character.
• The raise and rise actions can make a dead character a Ghost.

Enemy

• Assigned to a relationship to indicate the first character regards the
second negatively.

• The disliked goal is satisfied by other characters regarding a character this
way.

• The avenged goal is satisfied by a character not regarding others this way,
or by a character’s enemies being dead.

• The arrest, attack, banish, curse, and take actions can cause a
relationship set to Nullto change to this value.

Flower

• Only available when Alchemy or Marriage is enabled.
• This is an item that can be held in a character’s left or right hand.
• Can grow in a forest.
• When Alchemy is enabled, this item is in every forest by default.
• When Alchemy is enabled, it can be brewed into any potion.

Friend

• Assigned to a relationship to indicate the first character regards the
second positively.

27



• The obliged goal is satisfied by a character regarding others this way, or by
a character’s friends becoming healthy.

• The liked goal is satisfied by other characters regarding a character this
way.

• The charm, give, heal, and release actions can cause a relationship set
to Nullto change to this value.

Ghost

• Only available when Undead is enabled.
• Assigned to a character’s health to indicate they are a ghost which can only
take the curse and walk actions.

• The rise and raise actions can make a Dead character into a ghost.
• The banish action can make a ghost Dead.

HealPotion

• Only available when Healing is enabled.
• This is a potion item that can be held in a character’s left or right hand.
• Allows any character to heal another, changing their health to Healthy.
• When Alchemy is enabled, it can be brewed from a Flower.

Healthy

• Only available when Sickness or Violence is enabled.
• Assigned to a character’s health to indicate they are able to take most
actions.

• The heal and recover actions can make a Hurt character healthy.
• The attack, curse, and sicken actions can make a healthy character Hurt.

HidePotion

• Only available when Stealth is enabled.
• This is a potion item that can be held in a character’s left or right hand.
• Allows any character to hide, changing visible to False.
• When Alchemy is enabled, it can be brewed from a Flower.

Hurt

• Only available when Sickness or Violence is enabled.
• Assigned to a character’s health to indicate they are able to take most
actions but cannot walk.

• The attack, curse, and sicken actions can make a Healthy character hurt.
• The attack, curse, and die actions can make a hurt character Dead.

Ore

28



• Only available when Crafting is enabled.
• This is a metal item that can be held in a character’s left or right hand.
• When Crafting is enabled, this item is in every cave by default.
• When Crafting is enabled, it can be crafted from any other metal item or
into any other metal item.

RaisePotion

• Only available when Undead is enabled.
• This is a potion item that can be held in a character’s left or right hand.
• Allows any character to raise a Dead character into a Ghost.
• When Alchemy is enabled, it can be brewed from a Flower.

Sword

• Only available when Crime, Theft, or Violence is enabled.
• This is a metal item that can be held in a character’s left or right hand.
• Most characters need this to arrest and attack others.
• Most characters need this to take an item when the victim is Healthy.
• When Crafting is enabled, it can be crafted from any other metal item or
into any other metal item.

TeleportPotion

• Only available when Teleportation is enabled.
• This is a potion item that can be held in a character’s left or right hand.
• Allows any character to teleport to any location.
• When Alchemy is enabled, it can be brewed from a Flower.

29



Goals
Goals are objectives. There are two kinds of goals in MicroTales, character goals
and story goals. Character goals are personal objectives that individual characters
want to achieve. Story goals are objectives that the storyteller should try to achieve
with the story as a whole.

Similar to variables, a goal is one of the names define below followed by zero
to many arguments. Figure 1 shows an example list of goals. In YAML, it is the key
goals followed by a sequence of sequences. If the sequence is a character goal,
the first element is the name of one of the problem’s characters. If the sequence
is a story goal, this name is omitted. The next elements in both types are the goal
name (defined below), followed by the goal’s arguments.

For example, this character goal in YAML format says that Johnwants John to
be the monarch:

[John, ruling, John]

The first part, John, specifies which character has this goal. The rest specifies the
goal ruling(John), which is the objective that John be the monarch. Characters
can also have goals for other characters:

[Sheriff, ruling, John]

The goal of ruling(John) is the same, but it is held by the Sheriff. The Sheriff
also wants John to be monarch.

To make this a story goal instead of a character goal, we simply omit the
character from the start of the sequence:

[ruling, John]

This means that ruling(John) is a goal for the story as a whole rather than any
particular character. The storyteller should try to tell a story where John becomes
the monarch.

Two character goals always apply and do not need to be explicitly listed. When
Sickness or Violence is enabled, all characters prefer being Healthy over Hurt
and prefer Hurt over Dead. Second, if Undead is enabled, all Ghosts have the
avenged goal toward themselves. This means they want to kill any character they
regard as an Enemy.

Goals are persistent, meaning they do not go away once they are achieved. For
example, when a character has the goal to be rich, they want Coins. Once both
of their hands are holding Coins, they cannot have more, but they do not stop
having the goal to be rich. If they should ever lose one of their coins, they will
again want more.

MicroTales does not define the relative importance of one goal to another, and
when a goal can be achieved in multiple ways, it only defines ordinal preferences.
For example, if a character wants to be both rich and obliged, MicroTales does

30



not specify whether it is more important to that character to have Coins or
Friends; this is up to the storyteller. Similarly, a character who wants to be rich
would prefer to have 2 Coins over 1 Coin, but it is not necessarily twice as good
to have 2 than it is to have 1. Again, this is left up to the storyteller.

MicroTales tries to avoid imposing any particular model of what makes a good
story. Some good stories may not achieve goals, and stories that achieve goals
are not necessarily good stories. If goals can be ignored, why define them at all?
First, MicroTales is meant to study the challenges of story planning. Goals provide
constraints thatmake planning a story challenging because the storyteller needs to
look ahead to reason about what is and is not possible when deciding what actions
to take. Second, in an interactive setting, goals are what will be communicated to
players about what the characters want and what the objectives are for the story.
Stories are meant to involve multiple active characters, so anticipating how non-
player characters will act requires information about what they want.
at ( character, location )

• Achieved when character’s location is location.

avenged ( character )
• Achieved by maximizing the number of other characters who character
does not regard as an Enemy or whose health is Dead. In other words,
this goal is achieved by maximizing the number of other characters for
whom relationship(character, other) ≠ Enemy or health(other)

= Dead.
• Opposed to obliged.
• This goal improves each time character stops regarding another non-Dead
character as an Enemy or someone that character regards as an Enemy

becomes Dead. Relationships can improve via the charm, give, heal, or
release actions. Characters can die via the attack, curse, and die actions.

• This goal worsens each time character regards another non-Dead character
as an Enemy or someone that character regards as an Enemy stop being Dead.
Relationships can degrade via the arrest, attack, banish, curse, and take
actions. Characters can stop being Dead via the raise and rise actions.

disliked ( character )
• Achieved by maximizing the number of other characters who regard char-
acter as an Enemy. In other words, this goal is achieved by maximizing the
number of other characters for whom relationship(other, character)

= Enemy.
• Opposed to liked.

31



• This goal improves each time an additional other character regards character
an Enemy. Relationships can degrade via the arrest, attack, banish, curse,
and take actions.

• This goal worsens each time another character stops regarding character as
an Enemy. Relationships can improve via the charm, give, heal, or release
actions.

harmed ( character )
• Only available when Sickness or Violence is enabled.
• Achieved when character’s health is not Healthy.
• Opposed to unharmed.

lawful ( )

• Only available when Crime is enabled.
• Achieved by maximizing the number of characters who are not criminals
or who are criminals but are Dead or in a jail.

• Opposed to lawless.
• This goal improves each time an additional character meets the above
requirements. This can happen when the forgive or repent actions make
the character no longer a criminal, when a criminal moves to a jail, or
when a criminal dies.

• This goal worsens each time a character stops meeting the above
requirements. Typically this happens when a living free character commits
a crime (potential crimes include the arrest, attack, curse, release, and
take actions), but it can also happen when a criminal leaves a jail or
returns from the dead via the raise or rise actions.

lawless ( )

• Only available when Crime is enabled.
• Achieved by maximizing the number of characters who are criminals, are
not Dead, and free (not in a jail).

• Opposed to lawful.
• This goal improves each time an additional character meets the above
requirements. Typically this happens when a living free character commits a
crime, but it can also happenwhen a criminal leaves a jail or is raised from
the dead. Potential crimes include the arrest, attack, curse, release, and
take actions. Characters can leave a jail via the teleport action or the
walk action if the jail is not locked, perhaps because of the jailbreak or
release actions. Characters can return from the dead via the raise and
rise actions.

32



• This goal worsens each time a character stops meeting the above
requirements. This can happen when a character’s crimes are erased, when
a criminal moves to a jail, or when a criminal dies. Crimes are removed
via the forgive and repent actions. Characters can move to a jail via the
arrest, teleport, and walk actions. Characters can die via the attack,
curse, and die actions.

liked ( character )
• Achieved by maximizing the number of other characters who regard char-
acter as a Friend. In other words, this goal is achieved by maximizing the
number of other characters for whom relationship(other, character)

= Friend.
• Opposed to disliked.
• This goal improves each time an additional other character regards character
a Friend. Relationships can improve via the charm, give, heal, or release
actions.

• This goal worsens each time another character stops regarding character as
a Friend. Relationships can degrade via the arrest, attack, banish, curse,
and take actions.

obliged ( character )
• Achieved by maximizing the number of other characters who character
regards as a Friend and whose health is Healthy. In other words,
this goal is achieved by maximizing the number of other characters for
whom relationship(character, other) = Friend and health(other)
= Healthy.

• Opposed to avenged.
• This goal improves each time character regards a new Healthy character
as a Friend or someone character regards as a Friend becomes Healthy.
Relationships can improve via the charm, give, heal, or release actions.
Characters can become Healthy via the heal and recover actions.

• This goal worsens each time character stops regarding a Healthy character
as a Friend or someone character regards as a Friend stops being Healthy.
Relationships can degrade via the arrest, attack, banish, curse, and take
actions. Characters can stop being Healthy via the attack, curse, and
sicken actions.

rich ( character )
• Only available when Commerce or Theft is enabled.
• Achieved by maximizing the number of Coin items character is holding.

33



ruling ( character )
• Only available when Monarchy is enabled.
• Achieved when character is the monarch.
• When Marriage is enabled, this goal is also achieved when character’s
spouse is the monarch.

unharmed ( character )
• Only available when Sickness or Violence is enabled.
• Achieved when character’s health is Healthy.
• Opposed to harmed.

wed ( character, spouse )
• Only available when Marriage is enabled.
• Achieved when character’s spouse is spouse.

34



Actions
Actions are events that happen in a story. An action has preconditions that limit
when it can happen and effects that modify the world state.

A problem does not explicitly define actions; they are implied by the other
elements in the problem. Any time an action is enabled by a extension it is
available in a story. For example, the enthrone action is always available in every
story where Monarchy is enabled, though it can only happen when a character is
in a castle and holding a Crown.

Like variables and goals, actions are parameterized. The list of parameters are
given in parentheses after the name.

An action’s preconditions are meant as minimal restrictions for an action to
seem believable based on the world state. Action preconditions do not attempt
to restrict when an action makes narrative sense. For example, it probably does
not make narrative sense for a character who wants to be rich to give away their
Coin, but MicroTales does not prevent this because one purpose of MicroTales is to
study different models of when actions make sense. Ideally, a character’s actions
are determined by their character goals and the story goals, though this is not
required, and it is not enforced by preconditions. To study the generation of good
stories, it must be possible to generate bad stories.

Some actions have an active version that is done by a character and a passive
version that simply happens. For example, when a character is Hurt, they can be
made Healthy again via by the heal action, which is actively done by a character,
but they can also simply get better via the recover action. Actions not taken by
characters provide flexibility in solving problems, but may be perceived as a deus
ex machina.

For brevity, we list preconditions and effects on all variables, even if they are
not used in a problem. For example, many actions require that a character not be
Dead, but this only applies if health variables exist. If the Sickness or Violence
extensions are not enabled, health variables do not exist, so preconditions and
effects on those variables are ignored.

We use a few common shorthand phrases in action preconditions:
• “A character is alive,” means the character’s health variable is Healthy or
Hurt.

• “A character is holding an item,” means that character’s left or right hand
variable is set to that item constant.

• “A character has an empty hand,” means that character’s left or right hand
variable is set to Null.

• “A character is now holding one fewer item” means that one of their hands
that was previously item is now Null. In other words, if leftwas item, then

35



left is now Null. If left was not item and right was item, then right is
now Null. (Note it is possible for a character to be holding two copies of the
same item; only one is removed.)

• “A character is now holding one additional item” means that one of their
hands that was previously Nullis now item.

The only actions that always available in every problem are basic movement,
the walk action, and basic item interactions, the pickup, drop, give, and trade

actions.
arrest ( character, target, jail )

Preconditions:
• Only available when Crime is enabled.
• The jail must be any location of type jail.
• The character and target character may be the same.
• The character is alive.
• The character is holding a Sword.
• The target character is alive.
• The target is visible.
• The target is not in a locked jail.
• The character and target are at the same location.
Effects:
• The target’s location is now the jail.
• The jail is now locked.
• If the target is not a criminal, the character is now a criminal.
• If the relationship between target and character was Friend, it is now
Null.

• If the relationship between target and character was Null, it is now Enemy.
attack ( character, target )

Preconditions:
• Only available when Violence is enabled.
• The character and target character may be the same.
• The character is alive.
• The character is holding a Sword or is a knight.
• The target character is alive.
• The target is visible.
• The character and target are at the same location.
Effects:
• If the target was Healthy, they are now Hurt.
• If the target was Hurt, they are now Dead.
• If the target is not a criminal, the character is now a criminal.

36



• If the relationship between target and character was Friend, it is now
Null.

• If the relationship between target and character was Null, it is now Enemy.
• If the character’s spouse was other, then character’s spouse is now Nulland
other’s spouse is now Null.

banish ( character, target )
Preconditions:
• Only available when Undead is enabled.
• The character is alive.
• The character is holding a BanishPotion or is a cleric.
• The target character is a Ghost.
• The character and target are at the same location.
Effects:
• The target is now Dead.
• The target’s location is now Null.
• If character is not a cleric, they are now holding one fewer BanishPotion.
• If the relationship between target and character was Friend, it is now
Null.

• If the relationship between target and character was Null, it is now Enemy.
brew ( character, potion )

Preconditions:
• Only available when Alchemy is enabled.
• The potion is a potion item constant.
• The character is alive.
• The character is holding a Flower.
• The character is in a laboratory or is a sorcerer.
Effects:
• The character is now holding one fewer Flower.
• The character is now holding one additional potion.

charm ( character, target )
Preconditions:
• Only available when Enchantment is enabled.
• The character and target character are different.
• The character is alive.
• The character is holding a CharmPotion or is a noble.
• The target character is alive.
• The target character is visible.
• The character and target are at the same location.
Effects:

37



• If the relationship between target and character was Enemy, it is now Null.
• If the relationship between target and character was Null, it is now
Friend.

• If character is not a noble, they are now holding one fewer CharmPotion.
craft ( character, material, item )

Preconditions:
• Only available when Crafting is enabled.
• The material is a metal item constant.
• The item is a metal item constant.
• The material and item are different.
• The character is alive.
• The character is holding material.
• The character is at a workshop.
Effects:
• The character is no longer holding the material.
• The character is now holding the item.

curse ( character, target )
Preconditions:
• Only available when Sickness or Undead is enabled.
• The character and target character may be the same.
• The character is alive and holding a CursePotion, or the character is a
Ghost.

• The target is alive.
• The target is visible.
• The character and target are at the same location.
Effects:
• If the target was Healthy, they are now Hurt.
• If the target was Hurt, they are now Dead.
• If the target is not a Ghost, they are now holding one fewer CursePotion.
• If the target is not a criminal, the character is now a criminal.
• If the relationship between target and character was Friend, it is now
Null.

• If the relationship between target and character was Null, it is now Enemy.
• If the target’s spousewas other, then target’s spouse is now Nulland other’s
spouse is now Null.

die ( character )
Preconditions:
• Only available when Sickness or Violence is enabled.
• The character is Hurt.

38



Effects:
• The character is now Dead.
• The character is now visible.
• If the character’s spouse was other, then character’s spouse is now Nulland
other’s spouse is now Null.

drop ( character, item )
Preconditions:
• The item is an item constant.
• The character is alive.
• The character is holding the item.
• The character’s location is a cave, crossroads, forest, or village.
Effects:
• The character is no longer holding the item.
• The item at the character’s location is now item. (Note: This may replace
and permanently “destroy” the previous item at this location.)

enthrone ( character )
Preconditions:
• Only available when Monarchy is enabled.
• The character is alive.
• The character is holding a Crown.
• The character’s location is a castle.
Effects:
• The monarch is now character.

forgive ( character, target )
Preconditions:
• Only available when Forgiveness is enabled.
• The character and target character may be the same.
• The character is alive.
• The character is a cleric.
• The target is alive.
• The target is visible.
• The target is a criminal.
• The character and target are at the same location.
Effects:
• The target is no longer a criminal.

give ( character, item, target )
Preconditions:
• The character and target character are different.

39



• The item is an item constant.
• The character is alive.
• The character is visible.
• The character is holding the item.
• The target is alive.
• The target is visible.
• The target has an empty hand.
• The character and target are at the same location.
Effects:
• The target now has one additional item.
• The character now has one fewer item.
• If the relationship between target and character was Enemy, it is now Null.
• If the relationship between target and character was Null, it is now
Friend.

grow ( forest )
Preconditions:
• Only available when Alchemy or Marriage is enabled.
• The forest is a forest.
• The forest’s item is Null.
Effects:
• The forest’s item is now Flower.

heal ( character, target )
Preconditions:
• Only available when Healing is enabled.
• The character and target character may be the same.
• The character is alive.
• The character is holding a HealPotion or is a cleric.
• The target is Hurt.
• The target is visible.
• The character and target are at the same location.
Effects:
• The target is now Healthy.
• If the character is not a cleric, the character now has one fewer
HealPotion.

• If the relationship between target and character was Enemy, it is now Null.
• If the relationship between target and character was Null, it is now
Friend.

hide ( character )
Preconditions:

40



• Only available when Stealth is enabled.
• The character is alive.
• The character is visible.
• The character is at a camp or is a bandit.
Effects:
• The character is no longer visible.

jailbreak ( jail )
Preconditions:
• Only available when Crime is enabled.
• The jail is a jail.
• The jail is locked.
Effects:
• The jail is no longer locked.

loot ( character, item, target )
Preconditions:
• Only available when Sickness or Violence is enabled.
• The item is an item constant.
• The character is alive.
• The target is Dead.
• The character and target are at the same location.
Effects:
• The character is now holding one additional item.
• The target is now holding one fewer item.

marry ( character, spouse )
Preconditions:
• Only available when Marriage is enabled.
• The character and spouse character are different.
• The character is alive.
• The character is visible.
• The spouse of character is Null.
• The spouse is alive.
• The spouse is visible.
• The spouse of spouse is Null.
• The character and spouse are at the same location.
• The character’s and spouse’s location is a chapel.
Effects:
• The spouse of character is now spouse.
• The spouse of spouse is now character.

41



pickup ( character )
Preconditions:
• The character is alive.
• The character’s location is a cave, crossroads, forest, or village.
• The item at the character’s location is an item constant.
• The character has an empty hand.
Effects:
• The character is now holding one more of the item that was at their
location.

• The item at the character’s location is now Null.
raise ( character, target, graveyard )

Preconditions:
• Only available when Undead is enabled.
• The character is alive.
• The character is holding a RaisePotion.
• The target is Dead.
• The character and target are at the same location or the character is at the
graveyard.

Effects:
• The character is now holding one fewer RaisePotion.
• The target is now a Ghost.
• The target’s location is now the graveyard.
• The target’s left and right hands are now Null.

recover ( character )
Preconditions:
• Only available when Sickness or Violence is enabled.
• The character is Hurt.
Effects:
• The character is now Healthy.

release ( character, jail )
Preconditions:
• Only available when Crime is enabled.
• The jail is a jail.
• The character is alive.
• The jail is locked.
• The character’s location has a path to the jail.
Effects:
• The jail is no longer locked.

42



• If there exists a character whose is a criminal and whose location is the
jail, the character is now a criminal.

• For every other character whose location is the jail: If the relationship
between other and character was Enemy, it is now Null. If the relationship
was Null, it is now Friend.

repent ( character )
Preconditions:
• Only available when Forgiveness is enabled.
• The character is alive.
• The character is a criminal.
• The character’s location is a chapel.
Effects:
• The character is no longer a criminal.

rise ( character, graveyard )
Preconditions:
• Only available when Undead is enabled.
• The character is Dead.
Effects:
• The character is now a Ghost.
• The character’s location is now the graveyard.
• The character’s left and right hands are now Null.

sell ( character, item )
Preconditions:
• Only available when Commerce is enabled.
• The character is not a merchant.
• The item is an item constant.
• The item is not a Coin.
• The character is alive.
• The character is holding the item.
• The character’s location is a market.
Effects:
• The character is now holding one fewer of the item.
• The character is now holding one additional Coin.

sicken ( character )
Preconditions:
• Only available when Sickness is enabled.
• The character is Healthy.
Effects:

43



• The character is now Hurt.
take ( character, item, target )

Preconditions:
• Only available when Theft is enabled.
• The character and target character are different.
• The item is an item constant.
• The character is alive.
• The character is holding a Sword, or the character is a bandit, or the target
is Hurt.

• The character has an empty hand.
• The target is visible.
• The character and target are at the same location.
Effects:
• The character is now holding one additional item.
• The target is now holding one fewer item.
• If the target is not a criminal, the character is now a criminal.
• If the relationship between the target and character was Friend, it is now
Null.

• If the relationship between the target and character was Null, it is now
Enemy.

teleport ( character, location )
Preconditions:
• Only available when Teleportation is enabled.
• The location exists on the map.
• The character is alive.
• The character is holding a TeleportPotion.
• The character’s location is not Null.
Effects:
• The character’s location is now location.
• The character is now holding one fewer TeleportPotion.

trade ( character, price, target, item )
Preconditions:
• The character and target character are different.
• The price and item are different item constants.
• The character is alive.
• The character is visible.
• The character is holding the price.
• The target is alive.
• The target is visible.

44



• The target is holding the item.
• The character and target are at the same location.
Effects:
• The character is now holding one fewer price.
• The character is now holding one additional item.
• The target is now holding one fewer item.
• The target is now holding one additional price.

walk ( character, location )
Preconditions:
• The character is Healthy or a Ghost.
• There is a path from the character’s location to location.
Effects:
• The character’s location is now location.
• The character is now visible.

45



Version History
Version 1.0

• First public release of this document.

License
The first version of this document was written by Stephen G.Ware andMolly Siler
of the Narrative Intelligence Lab at the University of Kentucky in September, 2025.
The University of Kentucky holds the copyright to this document. It is released
under a Creative Commons Attribution-ShareAlike 4.0 International license (CC
BY-SA 4.0). In short, this means anyone is free to distribute it and to adapt it, even
for commercial purposes, as long as they give appropriate credit to the original
authors and release their modifications under the same license. Full details can be
found in the license document. The University of Kentucky reserves all rights not
explicitly granted by the license.

Acknowledgments
Thank you to Mira Fisher, Lasantha Senanayake, Gage Birchmeier, and other
members of the University of Kentucky Narrative Intelligence Lab for their
assistance in the design of MicroTales.

This workwas supported in part by the U.S. National Science Foundation under
Grant No. 2145153 and the U.S. Army Research Office under Grant No. W911NF-
24-1-0195. Any opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of
the National Science Foundation or the Army Research Office.

Grant #2145153 Grant #W911NF-24-1-0195

Bibliography
[1] Tim Anderson, Marl Blank, Bruce Daniels, and Dave Lebling. Zork I: the

great underground empire. Infocom, 1980.

46

http://cs.uky.edu/~sgware
http://cs.uky.edu
http://creativecommons.org/licenses/by-sa/4.0/deed.en


[2] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian
Barnes, Emery Fine, James Moore, Matthew Hausknecht, Layla El Asri,
Mahmoud Adada, Wendy Tay, and Adam Trischler. TextWorld: a learning
environment for text-based games. In Computer Games, pages 41–75.
Springer, 2019.

[3] Malik Ghallab, Adele Howe, Drew McDermott, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. PDDL—the Planning Domain
Definition Language, 1998.

[4] Ben Kybartas and Rafael Bidarra. A survey on story generation techniques
for authoring computational narratives. IEEE Transactions on Computational
Intelligence and Artificial Intelligence in Games, 9(3):239–253, 2016.

[5] Michael Lebowitz. Story-telling as planning and learning. Poetics, 14(6):483–
502, 1985.

[6] Michael Mateas and Andrew Stern. Structuring content in the Façade
interactive drama architecture. In Proceedings of the 1st AAAI conference on
Artificial Intelligence and Interactive Digital Entertainment, 2005.

[7] Mark O. Riedl and Vadim Bulitko. Interactive narrative: an intelligent
systems approach. AI Magazine, 34(1):67–77, 2013.

[8] John Slaney and Sylvie Thiébaux. Blocks World revisited. Artificial
Intelligence, 125(1):119–153, 2001.

[9] Ayal Taitler, Ron Alford, Joan Espasa, Gregor Behnke, Daniel Fišer, Michael
Gimelfarb, Florian Pommerening, Scott Sanner, Enrico Scala, Dominik
Schreiber, Javier Segovia-Aguas, and Jendrik Seipp. The 2023 International
PlanningCompetition. AIMagazine, 45(2):280–296, 2024. doi: https://doi.org/
10.1002/aaai.12169. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/aaai.12169.

[10] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De
Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Markus Krimmel,
Arjun KG, Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet
Tai, Hannah Tan, and Omar G. Younis. Gymnasium: a standard interface for
reinforcement learning environments, 2024. URL https://arxiv.org/abs/
2407.17032.

[11] Nick Walton. AI Dungeon. https://aidungeon.com/, 2019.

47

https://onlinelibrary.wiley.com/doi/abs/10.1002/aaai.12169
https://onlinelibrary.wiley.com/doi/abs/10.1002/aaai.12169
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
https://aidungeon.com/


[12] Stephen G. Ware and Rachelyn Farrell. A collection of benchmark problems
for the Sabre narrative planner. Technical report, Narrative Intelligence Lab,
University of Kentucky, November 2023.

[13] R. Michael Young, Stephen G. Ware, Bradly A. Cassell, and Justus
Robertson. Plans and planning in narrative generation: a review of plan-
based approaches to the generation of story, discourse and interactivity
in narratives. Sprache und Datenverarbeitung, Special Issue on Formal and
Computational Models of Narrative, 37(1-2):41–64, 2013.

48


	Motivation
	Design Goals
	Example Problem
	Definitions
	Extensions
	Locations and Paths
	Characters
	Variables and Initial Values
	Constants
	Goals
	Actions

	Version History
	License
	Acknowledgments
	Bibliography

